Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Nature ; 624(7990): 122-129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993721

ABSTRACT

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Subject(s)
Genetic Variation , Indigenous Peoples , Humans , Agriculture/history , California/ethnology , Caribbean Region/ethnology , Ethnicity/genetics , Ethnicity/history , Europe/ethnology , Genetic Variation/genetics , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, Ancient , History, Medieval , Human Migration/history , Indigenous Peoples/genetics , Indigenous Peoples/history , Islands , Language/history , Mexico/ethnology , Zea mays , Genome, Human/genetics , Genomics , Alleles
2.
PLoS One ; 18(6): e0287195, 2023.
Article in English | MEDLINE | ID: mdl-37352287

ABSTRACT

El Gigante rockshelter in western Honduras provides a deeply stratified archaeological record of human-environment interaction spanning the entirety of the Holocene. Botanical materials are remarkably well preserved and include important tree (e.g., ciruela (Spondias), avocado (Persea americana)) and field (maize (Zea mays), beans (Phaseolus), and squash (Cucurbita)) crops. Here we provide a major update to the chronology of tree and field crop use evident in the sequence. We report 375 radiocarbon dates, a majority of which are for short-lived botanical macrofossils (e.g., maize cobs, avocado seeds, or rinds). Radiocarbon dates were used in combination with stratigraphic details to establish a Bayesian chronology for ~9,800 identified botanical samples spanning the last 11,000 years. We estimate that at least 16 discrete intervals of use occurred during this time, separated by gaps of ~100-2,000 years. The longest hiatus in rockshelter occupation was between ~6,400 and 4,400 years ago and the deposition of botanical remains peaked at ~2,000 calendar years before present (cal BP). Tree fruits and squash appeared early in the occupational sequence (~11,000 cal BP) with most other field crops appearing later in time (e.g., maize at ~4,400 cal BP; beans at ~2,200 cal BP). The early focus on tree fruits and squash is consistent with early coevolutionary partnering with humans as seed dispersers in the wake of megafaunal extinction in Mesoamerica. Tree crops predominated through much of the Holocene, and there was an overall shift to field crops after 4,000 cal BP that was largely driven by increased reliance on maize farming.


Subject(s)
Anacardiaceae , Cucurbita , Persea , Humans , Bayes Theorem , Honduras , Agriculture , Archaeology , Crops, Agricultural , Zea mays
3.
Nature ; 615(7954): 866-873, 2023 03.
Article in English | MEDLINE | ID: mdl-36991187

ABSTRACT

The urban peoples of the Swahili coast traded across eastern Africa and the Indian Ocean and were among the first practitioners of Islam among sub-Saharan people1,2. The extent to which these early interactions between Africans and non-Africans were accompanied by genetic exchange remains unknown. Here we report ancient DNA data for 80 individuals from 6 medieval and early modern (AD 1250-1800) coastal towns and an inland town after AD 1650. More than half of the DNA of many of the individuals from coastal towns originates from primarily female ancestors from Africa, with a large proportion-and occasionally more than half-of the DNA coming from Asian ancestors. The Asian ancestry includes components associated with Persia and India, with 80-90% of the Asian DNA originating from Persian men. Peoples of African and Asian origins began to mix by about AD 1000, coinciding with the large-scale adoption of Islam. Before about AD 1500, the Southwest Asian ancestry was mainly Persian-related, consistent with the narrative of the Kilwa Chronicle, the oldest history told by people of the Swahili coast3. After this time, the sources of DNA became increasingly Arabian, consistent with evidence of growing interactions with southern Arabia4. Subsequent interactions with Asian and African people further changed the ancestry of present-day people of the Swahili coast in relation to the medieval individuals whose DNA we sequenced.


Subject(s)
African People , Asian , Genetics, Population , Female , Humans , Male , African People/genetics , Asian/genetics , History, Medieval , Indian Ocean , Tanzania , Kenya , Mozambique , Comoros , History, 15th Century , History, 16th Century , History, 17th Century , India/ethnology , Persia/ethnology , Arabia/ethnology , DNA, Ancient/analysis
4.
Science ; 377(6609): 940-951, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007020

ABSTRACT

Literary and archaeological sources have preserved a rich history of Southern Europe and West Asia since the Bronze Age that can be complemented by genetics. Mycenaean period elites in Greece did not differ from the general population and included both people with some steppe ancestry and others, like the Griffin Warrior, without it. Similarly, people in the central area of the Urartian Kingdom around Lake Van lacked the steppe ancestry characteristic of the kingdom's northern provinces. Anatolia exhibited extraordinary continuity down to the Roman and Byzantine periods, with its people serving as the demographic core of much of the Roman Empire, including the city of Rome itself. During medieval times, migrations associated with Slavic and Turkic speakers profoundly affected the region.


Subject(s)
Human Migration , Population , Archaeology , Asia , Europe , Genetic Variation , Greece , History, Ancient , History, Medieval , Human Migration/history , Humans , Population/genetics
5.
Science ; 377(6609): 982-987, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007054

ABSTRACT

We present the first ancient DNA data from the Pre-Pottery Neolithic of Mesopotamia (Southeastern Turkey and Northern Iraq), Cyprus, and the Northwestern Zagros, along with the first data from Neolithic Armenia. We show that these and neighboring populations were formed through admixture of pre-Neolithic sources related to Anatolian, Caucasus, and Levantine hunter-gatherers, forming a Neolithic continuum of ancestry mirroring the geography of West Asia. By analyzing Pre-Pottery and Pottery Neolithic populations of Anatolia, we show that the former were derived from admixture between Mesopotamian-related and local Epipaleolithic-related sources, but the latter experienced additional Levantine-related gene flow, thus documenting at least two pulses of migration from the Fertile Crescent heartland to the early farmers of Anatolia.


Subject(s)
Farmers , Gene Flow , Human Migration , Archaeology , Armenia , Cyprus , DNA, Ancient , Farmers/history , History, Ancient , Human Migration/history , Mesopotamia
6.
Science ; 377(6609): eabm4247, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007055

ABSTRACT

By sequencing 727 ancient individuals from the Southern Arc (Anatolia and its neighbors in Southeastern Europe and West Asia) over 10,000 years, we contextualize its Chalcolithic period and Bronze Age (about 5000 to 1000 BCE), when extensive gene flow entangled it with the Eurasian steppe. Two streams of migration transmitted Caucasus and Anatolian/Levantine ancestry northward, and the Yamnaya pastoralists, formed on the steppe, then spread southward into the Balkans and across the Caucasus into Armenia, where they left numerous patrilineal descendants. Anatolia was transformed by intra-West Asian gene flow, with negligible impact of the later Yamnaya migrations. This contrasts with all other regions where Indo-European languages were spoken, suggesting that the homeland of the Indo-Anatolian language family was in West Asia, with only secondary dispersals of non-Anatolian Indo-Europeans from the steppe.


Subject(s)
Gene Flow , Genome, Human , Human Migration , Asia , Balkan Peninsula , Europe , History, Ancient , Human Migration/history , Humans , White People/genetics
7.
Nat Commun ; 13(1): 3911, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853849

ABSTRACT

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.


Subject(s)
Climate Change , Droughts , Acclimatization , Archaeology
8.
Science ; 377(6601): 72-79, 2022 07.
Article in English | MEDLINE | ID: mdl-35771911

ABSTRACT

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Subject(s)
DNA, Ancient , DNA, Mitochondrial , Human Migration , Asian People/genetics , Child , DNA, Mitochondrial/genetics , Female , History, Ancient , Human Migration/history , Humans , Male , Micronesia , Oceania
9.
Nat Commun ; 13(1): 1530, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318319

ABSTRACT

The genetic prehistory of human populations in Central America is largely unexplored leaving an important gap in our knowledge of the global expansion of humans. We report genome-wide ancient DNA data for a transect of twenty individuals from two Belize rock-shelters dating between 9,600-3,700 calibrated radiocarbon years before present (cal. BP). The oldest individuals (9,600-7,300 cal. BP) descend from an Early Holocene Native American lineage with only distant relatedness to present-day Mesoamericans, including Mayan-speaking populations. After ~5,600 cal. BP a previously unknown human dispersal from the south made a major demographic impact on the region, contributing more than 50% of the ancestry of all later individuals. This new ancestry derived from a source related to present-day Chibchan speakers living from Costa Rica to Colombia. Its arrival corresponds to the first clear evidence for forest clearing and maize horticulture in what later became the Maya region.


Subject(s)
Agriculture , DNA, Ancient , Central America , Colombia , Forests , Humans
10.
Nature ; 603(7900): 290-296, 2022 03.
Article in English | MEDLINE | ID: mdl-35197631

ABSTRACT

Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa1-4. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations3,5. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80-20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch.


Subject(s)
Black People , DNA, Ancient , Genetics, Population , Africa South of the Sahara , Archaeology , Black People/genetics , Black People/history , DNA, Ancient/analysis , Gene Flow/genetics , Genome, Human/genetics , History, Ancient , Humans
11.
Nature ; 598(7882): 629-633, 2021 10.
Article in English | MEDLINE | ID: mdl-34526723

ABSTRACT

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.


Subject(s)
Dairying/history , Human Migration , Proteome , Animals , Archaeology , Asia , Dental Calculus/metabolism , Domestication , Europe , Gene Flow , Grassland , History, Ancient , Horses , Humans , Milk
12.
Nature ; 591(7850): 413-419, 2021 03.
Article in English | MEDLINE | ID: mdl-33618348

ABSTRACT

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Subject(s)
Genome, Human/genetics , Genomics , Human Migration/history , China , Crop Production/history , Female , Haplotypes/genetics , History, Ancient , Humans , Japan , Language/history , Male , Mongolia , Nepal , Oryza , Polymorphism, Single Nucleotide/genetics , Siberia , Taiwan
13.
Nature ; 590(7844): 103-110, 2021 02.
Article in English | MEDLINE | ID: mdl-33361817

ABSTRACT

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.


Subject(s)
Archaeology , Genetics, Population , Genome, Human/genetics , Human Migration/history , Islands , Population Dynamics/history , Archaeology/ethics , Caribbean Region , Central America/ethnology , Ceramics/history , Genetics, Population/ethics , Geographic Mapping , Haplotypes , History, Ancient , Humans , Male , Population Density , South America/ethnology
14.
PLoS One ; 15(9): e0238866, 2020.
Article in English | MEDLINE | ID: mdl-32941444

ABSTRACT

During the last 10 years, we have learned a great deal about the potential for a coastal peopling of the Americas and the importance of marine resources in early economies. Despite research at a growing number of terminal Pleistocene archaeological sites on the Pacific Coast of the Americas, however, important questions remain about the lifeways of early Paleocoastal peoples. Research at CA-SRI-26, a roughly 11,700 year old site on California's Santa Rosa Island, provides new data on Paleoindian technologies, subsistence strategies, and seasonality in an insular maritime setting. Buried beneath approximately two meters of alluvium, much of the site has been lost to erosion, but its remnants have produced chipped stone artifacts (crescents and Channel Island Amol and Channel Island Barbed points) diagnostic of early island Paleocoastal components. The bones of waterfowl and seabirds, fish, and marine mammals, along with small amounts of shellfish document a diverse subsistence strategy. These data support a relatively brief occupation during the wetter "winter" season (late fall to early spring), in an upland location several km from the open coast. When placed in the context of other Paleocoastal sites on the Channel Islands, CA-SRI-26 demonstrates diverse maritime subsistence strategies and a mix of seasonal and more sustained year-round island occupations. Our results add to knowledge about a distinctive island Paleocoastal culture that appears to be related to Western Stemmed Tradition sites widely scattered across western North America.


Subject(s)
Aquatic Organisms , Archaeology , Ecology , Paleontology , Population Dynamics , Technology/history , Animals , History, Medieval , Humans , Pacific Ocean , Seafood
15.
Sci Rep ; 10(1): 15172, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938967

ABSTRACT

An accurate understanding of biodiversity of the past is critical for contextualizing biodiversity patterns and trends in the present. Emerging techniques are refining our ability to decipher otherwise cryptic human-mediated species translocations across the Quaternary, yet these techniques are often used in isolation, rather than part of an interdisciplinary hypothesis-testing toolkit, limiting their scope and application. Here we illustrate the use of such an integrative approach and report the occurrence of North America's largest terrestrial mammalian carnivore, the short-faced bear, Arctodus simus, from Daisy Cave (CA-SMI-261), an important early human occupation site on the California Channel Islands. We identified the specimen by corroborating morphological, protein, and mitogenomic lines of evidence, and evaluated the potential natural and anthropogenic mechanisms of its transport and deposition. While representing just a single specimen, our combination of techniques opened a window into the behavior of an enigmatic species, suggesting that A. simus was a wide-ranging scavenger utilizing terrestrial and marine carcasses. This discovery highlights the utility of bridging archaeological and paleontological datasets to disentangle complex biogeographic scenarios and reveal unexpected biodiversity for island systems worldwide.


Subject(s)
Animal Migration , Ecosystem , Phylogeography/methods , Ursidae , Animals , Biodiversity , California , Fossils , Humans , Islands
16.
Nat Commun ; 11(1): 3868, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747648

ABSTRACT

Archaeological research documents major technological shifts among people who have lived in the southern tip of South America (South Patagonia) during the last thirteen millennia, including the development of marine-based economies and changes in tools and raw materials. It has been proposed that movements of people spreading culture and technology propelled some of these shifts, but these hypotheses have not been tested with ancient DNA. Here we report genome-wide data from 20 ancient individuals, and co-analyze it with previously reported data. We reveal that immigration does not explain the appearance of marine adaptations in South Patagonia. We describe partial genetic continuity since ~6600 BP and two later gene flows correlated with technological changes: one between 4700-2000 BP that affected primarily marine-based groups, and a later one impacting all <2000 BP groups. From ~2200-1200 BP, mixture among neighbors resulted in a cline correlated to geographic ordering along the coast.


Subject(s)
DNA, Ancient/analysis , Fossils , Gene Flow , Genome, Human/genetics , Human Migration , Archaeology/methods , Argentina , Bone and Bones/metabolism , Chile , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Genetic Variation , Geography , Humans , Phylogeny , Radiometric Dating/methods , Sequence Analysis, DNA/methods , Tooth/metabolism
17.
Sci Adv ; 6(23): eaba3245, 2020 06.
Article in English | MEDLINE | ID: mdl-32537504

ABSTRACT

Maize is a cultigen of global economic importance, but when it first became a staple grain in the Americas, was unknown and contested. Here, we report direct isotopic dietary evidence from 52 radiocarbon-dated human skeletons from two remarkably well-preserved rock-shelter contexts in the Maya Mountains of Belize spanning the past 10,000 years. Individuals dating before ~4700 calendar years before present (cal B.P.) show no clear evidence for the consumption of maize. Evidence for substantial maize consumption (~30% of total diet) appears in some individuals between 4700 and 4000 cal B.P. Isotopic evidence after 4000 cal B.P. indicates that maize became a persistently used staple grain comparable in dietary significance to later maize agriculturalists in the region (>70% of total diet). These data provide the earliest definitive evidence for maize as a staple grain in the Americas.

18.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32386546

ABSTRACT

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Subject(s)
Anthropology/methods , DNA, Ancient/analysis , Gene Flow/genetics , Central America , DNA, Mitochondrial/genetics , Gene Flow/physiology , Genetics, Population/methods , Haplotypes , Humans , Sequence Analysis, DNA , South America
20.
Nat Ecol Evol ; 4(3): 334-345, 2020 03.
Article in English | MEDLINE | ID: mdl-32094539

ABSTRACT

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.


Subject(s)
Agriculture , DNA, Ancient , Genome-Wide Association Study , Africa , Anthropology , Emigration and Immigration , Europe , Humans , Iran , Islands , Sicily , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...